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NASA TT F-9296

APPLICATION OF VARIATIONAL PRINCIPLES,
THE HAMILTON PRINCIPLE IN PARTICULAR,
TO THE APPROXIMATE SOLUTION OF
HYPERBOLIC DIFFERENTTAL EQUATIONS

ABSTRACT

CELL

A method of approximate solution is given in general form
for combination initial- and boundary-value problems associ-
ated with hyperbolic differential equations. The method is
based on a dimensional reduction analogous to that of the
Hamilton principle in mechanics,

The main difficulty in the hyperbolic, as opposed to the
elliptic, case lies in estimating the approximation error
and establishing the convergence conditions., The case of

a uniform string held at both ends in free oscillation is

analyzed as a numerical example, which suffices to demon-

strate the merit of the method. WW’

It is well known what a useful role is played in the solution of
boundary problems for elliptic equations by their corresponding variational
problems. Application of the latter has made it possible, for example, to
reduce the approximate solutian of a boundary problem to finding the minimum
of a function, as in the methods of Ritz and Euler, or to reduce the dimensions
of the problem by transforming partial differential equations to a system of
ordinary differential equations, as in the method developed by L. V. Kantorovich

(see ref., 1, chapter IV, section 3).

Numbers in the margin indicate pagination in the original foreign text.
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We will consider hyperbolic equations and problems In which they are
involved with initial and boundary conditions. For many such problems, the
corresponding variational problems can be asserted, (For problems in mechanics
that are expressible in terms of hyperbolic equations, the variational problems
can be derived by the least action principle in Hamilton-Ostrogradskiy form. )
We will be concerned with the possibility of utilizing variational problems to
reduce the dimensions of a problem as part of its approximate solution, much
as this 1s done in the method of Kantorovich,.

For definiteness, we will investigate the following problem. Let it be
required to find a twice continuously differentiable solution to the following

equation in the rectangular region G[O < x £1,0 £ y ¢ Y]:

(it + b+ (b + ety )y — Fule, 4, @) =0, @)
ac——b’<:0,

satisfying the initial conditions

u(x, 0)= @ (x)

Dex<l (2)-(21)
uy(xv O) = q"l (x)
and boundary conditions
4 (0, 4) = Y0(s), 4l 9) =4 ), %0(0) =40, #:(0)=go0) (3)

Here a, b, c are functions of x and y, continuously differentiable in G, while
F is the partial derivative with respect to u of a function F(x, y, u) defined
(-]
in the region [O < x <1,0< 3y £Y9,-05<ux w] and sufficientlyégo

smooth therein. We assume the existence and uniqueness of a solution and will

concern ourselves only with its approximate determination.



To formulate the variational principle corresponding to the combination
problem just stated, we start by inspecting the values of the solution u(x, y)
on the side y = Y of the rectangle G: u(x, ¥) = v(x). We introduce the
following second-degree functional with respect to the partial derivatives

u and u

o ’ o |4
1(u) = %S‘Y {au + 2buu, + cul + 2F (x, y, u)ldxdy. )
G

We will also examine the set @ of functions u(x, y) which are twice
continuously differentiable in G and assume the following fixed values at the
boundary of G:

u(e, 0)=gp(x),
ulr, V)=v(x), = (5%)-(6)
u(0, u) = %), ull, v)= b, ().

The solution u(x, y) of the boundary problem (1)-(3) is a member of the set ® .
Inasmuch as the differential equation (1) is the Euler equation for the
functional (4), this solution, of all the functions in the set &, has the

property that it will yleld a stationary valuel of the functional I(u).

1The converse may not be true. Let there exist in the set @ a function
u for which I{(u) has a stationary value., If this problem has a unique solution,
then it coincides with the solution of the problem (1)-(3). But the formulation
of a variational problem can have several solutions. Among them will be found
the solution of the boundary problem. In view of the assumed uniqueness of
solution to the problem (1)-(3), corresponding to different solutions of the
variational problem will be different functions ¢i(x) with the condition
uy(x, 0) = ¢i(x), and the sought-after solution of the problem (1)-(3) will
therefore be determined by the form ascribed to the function ¢1(x) on the right-

hand side of equation (2"). 3



This property of the solution is, for the boundary problem, the analog of
the familiar Hamilton-Ostogradskiy principle in mechanics. It can be used for
the approximate solution of a boundary problem by dimensional reduction.

Let Ao(x, y) be any sufficiently smooth function satisfying the

conditions (2)-(3): _ .
Ay(x, 0) = @y (1), Ay, (x, 0) = @1 (x); .

Ay (0, y) = Y(y), As(l, ¥ = 01 (y)

(7)
and let, in addition, Ak(x, y) be arbitrary smooth linearly independent
functions in G, reverting to zero at x = Oand x =1:

4,0, =0, Al ) =0.
We write the linear combination2

. ;

u (x, y) =A(x, ) + X Aulx, 9 l0), (8)
© k=t
containing in arbitrary functions fk(y) (0= y=<Y).
We subject the latier to the initial conditions <gél

h(0) =0, 1(0)=0, k=1, 2, ..., (9)

If we introduce un in place of u in equation (4), we obtain a functional that
depends on f, (k =1, 2,..., n). We choose fk such that for I(un) the system
of Euler equations will be satisfied. It is readily seen that these equations

can be reduced to the form

. - v S U
[ {(aupy + bupy), + (bity, + cuyy), — Fu(x, y, u,)) A (x, y)dx =0,
0 (10)

i=1, 2, ..., n.

2Specifically, for ¢O(x) = dl(x) = 0, it is convenient to seek the

——,

] FY e o
solution in the form up(x, )=, = Y Ac() e (v).

4
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The equations are linear with respect to the first and second derivatives

fé and f; of the unknown functions, and the conditions necessary in order for
them to be reduced to canonical form can be enunciated without difficulty.

The functions fk(x) (k = 1,.e., n) must be found by solving the system (10)
with the initial conditions (9). Once this is done, we can form the right-hand
side of (8) and take un(x, y) as the approximate solution of the combination
problem (1)-(3).

The author knows of no estimate of the difference u(x, y)—un(x, y)
between the exact and approximate solutions, nor of the conditions for
' convergence of un(x, v) — u(x, y). It is expected, of course, that the
investigation of both problems will be complicated by the fact that the
quadratic form au§+2buxuy+cu§ of the derivatives u and uy appearing in the
integral (4) alternates sign for hyperbolic equations, in contradistinction to
boundary problems associated with elliptic equations. Consequently, it is
probably not possible to expect a forthcoming solution to either of the
problems indicated.

We performed a numerical experiment, which gave satisfactory results and
led us to expect that the above-designated application of the variational
principle should prove useful, at least in some cases, for the approximate
solution of combination problems associated with hyperbolic equations.

We analyzed the free oscillations of a uniform string secured at both
ends x = 0 and x = 7 and, at the initial time t = O, having the shape of a
parabola symmetrical relative to the straight line x = 2 7, with a unit

deviation at the midpoint of the interval [O, T ] « The initial velocities

of every point on the string were assumed equal to zero.



The functional (4) for this problem has the form

=
1 1 .
1(u)=3—§5[p uf — Tu?] dxdt. (B)
00
We sought the solution in the form
u,(x, t) 4 x(-r.-—-.x)f ) + ‘n‘x”*l (-::-—‘x)*-Hf ® |
'\t = 0 P [ 307 (c)
T k=1 :
Some of the computational results are given below
x/t . 0.5 15 2.5 3,0
0,43398 0,89665 0,54873 0,12289
0,46956 0,87541 0,57024 0,15102
0,5 0,43319 0,90378 = 0,54161 0,12629 -
0,43589 0,89631 -  0,54822 0,11821
0,43328 0,89513 0,54623  0,12367
—0,17395 —0,46979 —0,22321 —0,049261 '
- —0,22433  —0,41822  —0,27243  —0,072146
2,0 —0,16662 - —0,45828  —0,22620 © —0,033594
—0,16706  —0,45954 = —0,22516  —0,036944
—0,17455 = —0,47041  —0,22247  —0,046126
—0,52717  —0,98984 ~ —0,64194  —0,16404 692
~—0,53030 —0,98865 ° —0,64400 —0,17055
3.0 —0,52933 —0,98845 —0,64308 -—0,17002
' —0,52540  —0,98322 —0,64667 —0,15252
—0,52669  —0.99032  —0,64111  —0.16798
—0,086079 —0,25011  —0,11045  —0,024376
—0,10904  —0,20329  —0,13242  —0,035069
4,5  —0.11767. —0,20662  —0,14084  —0,039571
—0,081734" —0.23830  —0,10903  —0,022829
—0,084263 —0,2436¢ —0,10732  —0,026022

The first line of each horizontal band gives the exact solutions, the

subsequent lines give the approximate solutions for n = 0, 1, 2, 3, respectively.

The ratio T/P was assumed equal to unity.
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